
Langsim Documentation
Release 1.0

Mark Granroth-Wilding

Oct 25, 2018

Contents

1 Getting started 3

2 Pipelines 5

3 Corpora 7

4 Documentation 9

Python Module Index 27

i

ii

Langsim Documentation, Release 1.0

Unsupervised Learning of Cross-Lingual Symbol Embeddings Without Parallel Data
Mark Granroth-Wilding and Hannu Toivonen (2019)
In proceedings Society for Computation in Linguistics (SCiL)

This codebase contains the code used to prepare data and train models for this paper. The code is released on Github.

For more information about the paper, including downloadable pre-trained embeddings, see here.

It uses Pimlico. Pimlico pipeline config files can be found in the pipelines directory. Most of the code consists of
Pimlico modules (documented here).

The code has been cleaned up for release, which involved removing a lot of old code from various experiments carried
out over a number of years. Hopefully, I’ve not removed anything important, but get in touch with Mark if something
seems to be missing.

In the paper, the model is called Xsym. In this code, it is called neural_sixgram.

Contents 1

https://blogs.umass.edu/scil/scil-2019/
https://github.com/markgw/xsym
https://mark.granroth-wilding.co.uk/papers/unsup_symbol/
http://pimlico.readthedocs.io
https://mark.granroth-wilding.co.uk/

Langsim Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting started

To start using the code, see Pimlico’s guide for initializing Pimlico with someone else’s code.

In short. . .

• Download the codebase and extract it.

• Download the bootstrap.py script from Pimlico to the root directory of the codebase.

• In the root directory, run: python bootstrap.py pipelines/char_embed_corpora.conf

• Check that the setup has worked:

– cd pipelines

– ./char_embed_corpora.conf status

– Pimlico should do some initial setup and then show a long list of modules in the pipeline

• Delete bootstrap.py

3

https://pimlico.readthedocs.io/en/latest/guides/bootstrap.html
https://github.com/markgw/xsym
https://raw.githubusercontent.com/markgw/pimlico/master/admin/bootstrap.py

Langsim Documentation, Release 1.0

4 Chapter 1. Getting started

CHAPTER 2

Pipelines

There are two pipelines. These cover the corruption experiment and the main model training described in the paper.

In addition to this, if you want to reproduce everything we did, you’ll need to preprocess the data for low-resourced
Uralic languages to clean it up. That process is implemented and documented in a separate codebase, which also uses
Pimlico.

2.1 char_embed_corpora

Main model training pipeline.

This pipeline loads a variety of corpora and trains Xsym on them. It produces all the models described in the paper.
To train on these corpora, you’ll need to download them and then update the paths in the [vars] section to point to
their locations.

There are two slightly different implementations of the training code, found in the Pimlico modules
neural_sixgram and neural_sixgram2. If you’re training the model yourself, you should use the more
recent and more efficient neural_sixgram2.

The pipeline also includes training on some language pairs not reported in the paper.

2.2 char_embed_corrupt

Language corruption experiments to test Xsym’s robustness to different types of noise.

This pipeline implements the language corruption experiments reported in the paper. It takes real language data
(Finnish forum posts) and applies random corruptions to it, training Xsym on uncorrupted and corrupted pairs.

5

https://mark.granroth-wilding.co.uk/papers/unsup_symbol/

Langsim Documentation, Release 1.0

6 Chapter 2. Pipelines

CHAPTER 3

Corpora

3.1 Ylilauta

Finnish forum posts.

• Download.

3.2 Estonian Reference Corpus

Corpus of written Estonian from a variety of sources. Here we use just the subsets: tasakaalus_ajalehed and
foorumid_lausestatud.

• Corpus

• Forum post subset

3.3 Danish Wikipedia dump

Text dump of Danish Wikipedia.

• Download

3.4 Europarl

The Europarl corpus of transcripts from the European Parliament.

Download the full source release. We use the Swedish, Spanish and Portuguese parts.

• Homepage

7

http://urn.fi/urn:nbn:fi:lb-2016101211
http://www.cl.ut.ee/korpused/segakorpus/
http://www.cl.ut.ee/korpused/segakorpus/uusmeedia/foorumid
http://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/
http://www.statmt.org/europarl/

Langsim Documentation, Release 1.0

3.5 Multilingual Resource Collection of the University of Helsinki
Language Corpus Server (UHLCS)

Data used to be available from the homepage, but is now available through the CSC. You’ll need to request access to
the specific language datasets used.

The data you get is messy, in inconsistent formats and encodings. See the code distributed separately for how to
preprocess this and get it into a useable textual form, which we use below.

• UHLCS homepage

• CSC

• My code for preparing the corpora

8 Chapter 3. Corpora

http://www.ling.helsinki.fi/uhlcs/
https://www.csc.fi/
https://mark.granroth-wilding.co.uk/papers/unsup_symbol/

CHAPTER 4

Documentation

4.1 Pimlico modules

Pimlico modules for symbol embedding experiments. These are used in the Pimlico pipelines in the pipelines/
directory.

4.1.1 Fake language tools

Some tools for generating fake language data.

This performs the language corruption used in the paper to test the robustness of the Xsym model.

Corrupt text

Path langsim.modules.fake_language.corrupt
Executable yes

Introduce random noise into a corpus.

The input corpus is expected to be character-level encoded integer indexed text. (You could also run it on word-level
encoded data, but the results might be odd.)

Produces a new corpus with a new character vocabulary, which might not be identical to the input vocabulary, depend-
ing on the options. E.g. some characters might be removed or added.

If a token called ‘OOV’ is found in the vocabulary, it will never be subject to a mapping or mapped to.

Types of noise, with corresponding parameters:

• Random character substitutions: randomly sample a given proportion of characters and choose a character at
random from the unigram distribution of the input corpus to replace each with

9

Langsim Documentation, Release 1.0

– char_subst_prop: proportion of characters (tokens) to sample for substitution. Use 0 to disable this
corruption

• Systematic character mapping: perform a systematic substitution throughout the corpus of a particular character
A (randomly chosen from input vocab) for another B (randomly chosen from output vocab). This means that
the resulting Bs are indistinguishable from those that were Bs in the input. A is removed from the output vocab,
since it is never used now. When multiple mappings are chosen, it is not checked that they have different Bs.

A number of characters is chosen using frequencies so that the expected proportion of tokens affected
is at least the given parameter. Since the resulting expected proportion of tokens may be higher due to
the sampling of characters, the actual expected proportion is output among the corruption parameters as
actual_char_subst_prop.

– char_map_prop: proportion of characters (types) in input vocab to apply a mapping to. Use 0 to disable
this corruption

• Split characters: choose a set of characters. For each A invent a new character B and map half of its occurrences
to B, leaving half as they were. Each of these results in adding a brand new unicode character to the output
vocab

As with char_map_prop, a number of characters is chosen using frequencies so that the expected proportion
of tokens affected is at least the given parameter. Since the resulting expected proportion of tokens may be higher
due to the sampling of characters, the actual expected proportion is output among the corruption parameters as
actual_char_split_prop.

– char_split_prop: proportion of characters (types) to apply this splitting to

Inputs

Name Type(s)
corpus TarredCorpus<IntegerListsDocumentType>
vocab Dictionary
frequencies NumpyArray

Outputs

Name Type(s)
corpus IntegerListsDocumentTypeTarredCorpus
vocab Dictionary
mappings NamedFile()
close_pairs NamedFile()
corruption_params NamedFile()

Options

Name Description Type
char_map_prop Proportion of character types in input vocab to apply a random mapping to another char-

acter to. Default: 0
float

char_split_prop Proportion of character types in input vocab to apply splitting to. Default: 0 float
char_subst_prop Proportion of characters to sample for random substitution. Default: 0 float

10 Chapter 4. Documentation

Langsim Documentation, Release 1.0

Inspect corrupted text

Path langsim.modules.fake_language.inspect
Executable yes

Display corrupted and uncorrupted texts alongside one another

For observing the output of the corruption process, which otherwise is just a load of integer-encoded data.

Inputs

Name Type(s)
corpus1 TarredCorpus<IntegerListsDocumentType>
vocab1 Dictionary
corpus2 TarredCorpus<IntegerListsDocumentType>
vocab2 Dictionary

Outputs

Name Type(s)
inspect RawTextDocumentTypeTarredCorpus

4.1.2 Input readers

Est Ref normalization

Path langsim.modules.input.est_ref_normalize
Executable yes

Special normalization routine for Estonian Reference Corpus.

Splits up sentences into separate lines. This is easy to do, since the corpus puts a double space between sentences.
There are also double spaces in other places, so we only split on double spaces after punctuation. Other double spaces
are removed.

We also lower-case the whole corpus.

Inputs

Name Type(s)
corpus TarredCorpus<TextDocumentType>

4.1. Pimlico modules 11

Langsim Documentation, Release 1.0

Outputs

Name Type(s)
corpus RawTextDocumentTypeTarredCorpus

Options

Name Description Type
forum Set to T for processing the forum data, which is slightly different to the newspaper data bool

Europarl corpus reader

Path langsim.modules.input.europarl
Executable no

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus OutputType

Options

Name Description Type
files (required) Comma-separated list of absolute paths to files to include in the collection. Paths

may include globs. Place a ‘?’ at the start of a filename to indicate that it’s optional. You
can specify a line range for the file by adding ‘:X-Y’ to the end of the path, where X is the
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are
1-indexed.)

comma-
separated
list of (line
range-
limited) file
paths

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you can
use globs here too)

comma-
separated list
of strings

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

12 Chapter 4. Documentation

Langsim Documentation, Release 1.0

Ylilauta VRT files

Path langsim.modules.input.ylilauta
Executable yes

Input reader for Ylilauta corpus.

Based on standard VRT text collection module, with a small amount of special processing added for Ylilauta.

See also:

pimlico.modules.input.text_annotations.vrt_text: Reading text from VRT files.

This is an input module. It takes no pipeline inputs and is used to read in data

Inputs

No inputs

Outputs

Name Type(s)
corpus YlilautaOutputType

Options

Name Description Type
files (required) Comma-separated list of absolute paths to files to include in the collection. Paths

may include globs. Place a ‘?’ at the start of a filename to indicate that it’s optional. You
can specify a line range for the file by adding ‘:X-Y’ to the end of the path, where X is the
first line and Y the last to be included. Either X or Y may be left empty. (Line numbers are
1-indexed.)

comma-
separated
list of (line
range-
limited) file
paths

ex-
clude

A list of files to exclude. Specified in the same way as files (except without line ranges).
This allows you to specify a glob in files and then exclude individual files from it (you can
use globs here too)

comma-
separated list
of strings

en-
cod-
ing_errors

What to do in the case of invalid characters in the input while decoding (e.g. illegal utf-8
chars). Select ‘strict’ (default), ‘ignore’, ‘replace’. See Python’s str.decode() for details

string

en-
cod-
ing

Encoding to assume for input files. Default: utf8 string

4.1.3 Symbol embedding methods

Neural network-based symbol (phoneme/character) representation learning techniques that work by applying the dis-
tributional hypothesis cross-lingually and simultaneously learning representations for both languages.

4.1. Pimlico modules 13

Langsim Documentation, Release 1.0

Some ways of doing this work better than others. The best method appears to be neural_sixgram2, which is now
the only one implemented here. It takes into account a relatively broad context of the symbols, and seems to be fairly
robust across language pairs.

Corruption results

Path langsim.modules.local_lm.corruption_results
Executable yes

Collect results from the corruption experiments, including models trained on corrupted corpora, and analyse them.

Inputs

Name Type(s)
corrup-
tion_params

list of A file collection containing at least one file (or a given specific number). No constraint is put
on the name of the file(s). Typically, the module will just use whatever the first file(s) in the collection
is

models list of KerasModelBuilderClass
vocab1s list of Dictionary
vocab2s list of Dictionary
mapped_pairslist of A file collection containing at least one file (or a given specific number). No constraint is put

on the name of the file(s). Typically, the module will just use whatever the first file(s) in the collection
is

Outputs

Name Type(s)
analysis NamedFile()
files UnnamedFileCollection

Learned embedding analysis

Path langsim.modules.local_lm.embed_anal
Executable yes

Various analyses thrown together for including things in a paper.

To simplify things, we assume for now that there are exactly two languages (vocabs, corpora). We could generalize
this later, but for now it makes the code much easier and we only do this for the paper.

Inputs

Name Type(s)
model NeuralSixgramKerasModel
vocabs list of Dictionary
frequencies list of NumpyArray

14 Chapter 4. Documentation

Langsim Documentation, Release 1.0

Outputs

Name Type(s)
analysis NamedFile()
pairs NamedFile()

Options

Name Description Type
oov If given, look for this special token in each vocabulary which represents OOVs.

These are not filtered out, even if they are rare
string

lang_names (required) Comma-separated list of language IDs to use in output comma-separated
list of strings

min_token_propMinimum frequency, as a proportion of tokens, that a character in the vocabu-
lary must have to be shown in the charts

float

Embeddings from model

Path langsim.modules.local_lm.embeddings_from_model
Executable yes

Simple module to extract the trained embeddings from a model stored by the training process, which can then be used
in a generic way and output to generic formats.

Inputs

Name Type(s)
model NeuralSixgramKerasModel
vocabs list of Dictionary
frequencies list of NumpyArray

Outputs

Name Type(s)
embeddings Embeddings

Options

Name Description Type
lang_names (required) Comma-separated list of language IDs to use in output comma-separated list of strings

4.1. Pimlico modules 15

Langsim Documentation, Release 1.0

Language-specific embeddings

Path langsim.modules.local_lm.lang_embeddings
Executable yes

Separate out the embeddings belonging to the two languages, identified by prefixes on the words.

It’s assumed that all embeddings for language “X” have words of the form “X:word”.

This only works currently for cases where there are exactly two languages.

Inputs

Name Type(s)
embeddings Embeddings

Outputs

Name Type(s)
lang1_embeddings Embeddings
lang2_embeddings Embeddings

Options

Name Description Type
lang1 Prefixes for language 1. If not given, language 1 is taken to be whichever appears first in the

vocabulary
string

Neural sixgram (Xsym) trainer, v1

Path langsim.modules.local_lm.neural_sixgram
Executable yes

A special kind of six-gram model that combines 1-3 characters on the left with 1-3 characters on the right to learn
unigram, bigram and trigram representations.

This is one of the most successful representation learning methods among those here. It’s also very robust across
language pairs and different sizes of dataset. It’s therefore the model that I’ve opted to use in subsequent work that
uses the learned representations.

16 Chapter 4. Documentation

Langsim Documentation, Release 1.0

Inputs

Name Type(s)
vocabs list of Dictionary
corpora list of TarredCorpus<IntegerListsDocumentType>
frequencies list of NumpyArray

Outputs

Name Type(s)
model KerasModelBuilderClass

4.1. Pimlico modules 17

Langsim Documentation, Release 1.0

18 Chapter 4. Documentation

Langsim Documentation, Release 1.0

Options

NameDescription Type
em-
bed-
ding_size

Number of dimensions in the hidden representation. Default: 200 int

plot_freqOutput plots to the output directory while training is in progress. This slows down training if it’s
done very often. Specify how many batches to wait between each plot. Fewer means you get a
finer grained picture of the training process, more means training goes faster. 0 (default) turns off
plotting

int

con-
text_weights

Coefficients that specify the relative frequencies with which each of the different lengths of con-
texts (1, 2 and 3) will be used in training examples. For each sample, a pair context lengths is
selected at random. Six coefficients specify the weights given to (1,1), (1,2), (1,3), (2,2), (2,3) and
(3,3). The opposite orderings have the same probability. By default, they are uniformly sampled
(‘1,1,1,1,1,1’), but you may adjust their relative frequencies to put more weight on some lengths
than others. The first 6 values are the starting weights. After that, you may specify sets of 7 values:
num_epochs, weight1, weight2, The weights at any point will transition smoothly (linearly)
from the previous 6-tuple to the next, arriving at the epoch number given (i.e. 1=start of epoch 1 /
end of first epoch). You may use float epoch numbers, e.g. 0.5

<func-
tion
con-
text_weights
at
0x7f3b52ef3050>

com-
po-
si-
tion2_layers

Number and size of layers to use to combine pairs of characters, given as a list of integers. The final
layer must be the same size as the embeddings, so is not included in this list

comma-
separated
list
of
ints

epochsMax number of training epochs. Default: 5 int
pre-
dic-
tor_layers

Number and size of layers to use to take a pair of vectors and say whether they belong beside each
other. Given as a list of integers. Doesn’t include the final projection to a single score

comma-
separated
list
of
ints

limit_trainingLimit training to this many batches. Default: no limit int
l2_reg L2 regularization to apply to all layers’ weights. Default: 0. float
unit_normIf true, enforce a unit norm constraint on the learned embeddings. Default: false bool
word_internalOnly train model on word-internal sequences. Word boundaries will be included, but no sequences

spanning over word boundaries
bool

dropoutDropout to apply to embeddings during training. Default: 0.3 float
oov If given, use this special token in each vocabulary to represent OOVs. Otherwise, they are repre-

sented by an index added at the end of each vocabulary’s indices
string

word_boundaryIf using word_internal, use this character (which must be in the vocabulary) to split words. Default:
space

<type
‘uni-
code’>

com-
po-
si-
tion3_layers

Number and size of layers to use to combine triples of characters, given as a list of integers. The
final layer must be the same size as the embeddings, so is not included in this list

comma-
separated
list
of
ints

store_allStore updated representations from every epoch, even if the validation loss goes up. The default be-
haviour is to only store the parameters with best validation loss, but for these purposes we probably
want to set this to T most of the time. (Defaults to F for backwards compatibility)

bool

com-
po-
si-
tion_dropout

Dropout to apply to composed representation during training. Default: same as dropout float

batch Training batch size. Default: 100 int
sim_freqHow often (in batches) to compute the similarity of overlapping phonemes between the languages.

-1 (default) means never, 0 means once at the start of each epoch
int

cor-
pus_offset

To avoid training on parallel data, in the case where the input corpora happen to be parallel, jump
forward in the second corpus by this number of utterances, putting the skipping utterances at the
end instead. Default: 10k utterances

int

cross_sentencesBy default, the sliding window passed over the corpus stops at the end of a sentence (or whatever
sequence division is in the input data) and starts again at the start of the next. Instead, join all
sequences within a document into one long sequence and pass the sliding window over that

bool

val-
i-
da-
tion

Number of samples to hold out as a validation set for training. Simply taken from the start of the
corpus. Rounded to the nearest number of batches

int

em-
bed-
ding_activation

Activation function to apply to the learned embeddings before they’re used, and also to every pro-
jection into the embedding space (the final layers of compositions). By default, ‘linear’ is used, i.e.
normal embeddings with no activation and a linear layer at the end of the composition functions.
Choose any Keras named activation

string

4.1. Pimlico modules 19

Langsim Documentation, Release 1.0

Neural sixgram (Xsym) trainer, v2

Path langsim.modules.local_lm.neural_sixgram2
Executable yes

A special kind of six-gram model that combines 1-3 characters on the left with 1-3 characters on the right to learn
unigram, bigram and trigram representations.

This is one of the most successful representation learning methods among those here. It’s also very robust across
language pairs and different sizes of dataset. It’s therefore the model that I’ve opted to use in subsequent work that
uses the learned representations.

This is a new version of the code for the model training. It will include random restarts and early stopping using the
new validation criterion. I’ve moved to a new version so that I can get rid of old things from experiments with different
types of models and clean up the code. The old version was used to measure the validity of the validation criterion.
From now on, I’m using the validation criterion in earnest.

I’m now changing all default parameters to those use in the submitted paper and removing some parameters for features
that no longer need to be parameterized.

Note: A note on using GPUs

We use Keras to train. If you’re using the tensorflow backend (which is what is assumed by this module’s dependen-
cies) and you want to use GPUs, you’ll need to install the GPU version of Tensorflow, not just “tensorflow”, which
will be installed during dependency resolution. Try this (changing the virtualenv directory name if you’re not using
the default):

./pimlico/lib/virtualenv/default/bin/pip install --upgrade tensorflow-gpu

Note: Changed 12.09.18: this module takes prepared positive sample data as input instead of doing the preparation
(random shuffling, etc) during training. I found a bug that meant that we weren’t training on the full datasets, so
training actually takes much longer than it seemed. It’s therefore important not to waste time redoing data processing
on each training epoch.

Some pipelines that were written before this change will no longer work, but they’re quite simple to fix. Add an extra
data preparation module before the training module, taking the inputs and parameters from the training module as
appropriate (and removing some of them from there).

Inputs

Name Type(s)
vocabs list of Dictionary
samples NeuralSixgramTrainingData

Outputs

Name Type(s)
model NeuralSixgramKerasModel

20 Chapter 4. Documentation

Langsim Documentation, Release 1.0

4.1. Pimlico modules 21

Langsim Documentation, Release 1.0

Options

NameDescription Type
com-
po-
si-
tion3_layers

Number and size of layers to use to combine triples of characters, given as a list of integers. The
final layer must be the same size as the embeddings, so is not included in this list. Default: nothing,
i.e. linear transformation

comma-
separated
list
of
ints

em-
bed-
ding_size

Number of dimensions in the hidden representation. Default: 30 int

com-
po-
si-
tion_dropout

Dropout to apply to composed representation during training. Default: 0.01 float

pre-
dic-
tor_layers

Number and size of layers to use to take a pair of vectors and say whether they belong beside each
other. Given as a list of integers. Doesn’t include the final projection to a single score. Default: 30
(single hidden layer)

comma-
separated
list
of
ints

dropoutDropout to apply to embeddings during training. Default: 0.1 float
plot_freqOutput plots to the output directory while training is in progress. This slows down training if it’s

done very often. Specify how many batches to wait between each plot. Fewer means you get a finer
grained picture of the training process, more means training goes faster. -1 turns off plotting. 0
(default) means once at the start/end of each epoch

int

pa-
tience

Early stopping patience. Number of epochs with no improvement after which training will be
stopped. Default: 2

int

batch Training batch size in training samples (pos-neg pairs). Default: 1000 int
com-
po-
si-
tion2_layers

Number and size of layers to use to combine pairs of characters, given as a list of integers. The final
layer must be the same size as the embeddings, so is not included in this list. Default: nothing, i.e.
linear transformation

comma-
separated
list
of
ints

restartsHow many random restarts to perform. Each time, the model is randomly re-initialized from scratch.
All models are saved and the one with the best value of the validation criterion is stored as the output.
Default: 1, just train once

int

epochsMax number of training epochs. Default: 10 int
split_epochsNormal behaviour is to iterate over the full dataset once in each epoch, generating random nega-

tive samples to accompany it. Early stopping is done using the validation metric over the learned
representations after each epoch. With larger datasets, this may mean waiting too long before we
start measuring the validation metric. If split_epochs > 1, one epoch involves 1/split_epochs of the
data. The following epoch continues iterating over the dataset, so all the data gets used, but the early
stopping checks are performed split_epochs times in each iteration over the dataset

int

sim_freqHow often (in batches) to compute the similarity of overlapping phonemes between the languages.
-1 (default) means never, 0 means once at the start of each epoch. If input mapped_pairs is given, the
similarity is computed between these pairs; otherwise we use any identical pairs that exist between
the vocabularies

int

limit_trainingLimit training to this many batches. Default: no limit int
val-
i-
da-
tion

Number of samples to hold out as a validation set for training. Simply taken from the start of the
corpus. Rounded to the nearest number of batches

int

unit_normIf true, enforce a unit norm constraint on the learned embeddings. Default: true bool

22 Chapter 4. Documentation

Langsim Documentation, Release 1.0

Neural sixgram samples prep

Path langsim.modules.local_lm.neural_sixgram_samples
Executable yes

Prepare positive samples for neural sixgram training data.

Instead of doing random shuffling, etc, on the fly while training, which takes quite a lot of time, we do it once before
and just iterate over the result at training time.

The output is then used by neural_sixgram2 to train the Xsym model.

Inputs

Name Type(s)
vocabs list of Dictionary
corpora list of TarredCorpus<IntegerListsDocumentType>
frequencies list of NumpyArray

Outputs

Name Type(s)
samples NeuralSixgramTrainingData

Options

Name Description Type
cross_sentencesBy default, the sliding window passed over the corpus stops at the end of a sentence (or whatever

sequence division is in the input data) and starts again at the start of the next. Instead, join all
sequences within a document into one long sequence and pass the sliding window over that

bool

oov If given, use this special token in each vocabulary to represent OOVs. Otherwise, they are repre-
sented by an index added at the end of each vocabulary’s indices

string

shuf-
fle_window

We simulate shuffling the data by reading samples into a buffer and taking them randomly from
there. This is the size of that buffer. A higher number shuffles more, but makes data preparation
slower

int

cor-
pus_offset

To avoid training on parallel data, in the case where the input corpora happen to be parallel, jump
forward in the second corpus by this number of utterances, putting the skipping utterances at the
end instead. Default: 10k utterances

int

Plots of neural sixgram models

Path langsim.modules.local_lm.plot
Executable yes

Produces various plots to help with analysing the results of training a neural_sixgram model.

4.1. Pimlico modules 23

Langsim Documentation, Release 1.0

Note that this used to be designed to support other model types, but I’m now cleaning up and only supporting neu-
ral_sixgram2.

Inputs

Name Type(s)
model KerasModelBuilderClass
vocabs list of Dictionary
corpora list of TarredCorpus<IntegerListsDocumentType>
frequencies list of NumpyArray

Outputs

Name Type(s)
output PimlicoDatatype

Options

Name Description Type
distance Distance metric to use ‘eucl’, ‘dot’, ‘cos’,

‘man’ or ‘sig_kern’
num_pairs Number of most frequent character pairs to show on the chart (passed

through the composition function to get their representation)
int

min_token_propMinimum frequency, as a proportion of tokens, that a character in the vocab-
ulary must have to be shown in the charts

float

lang_names (required) Comma-separated list of language IDs to use in output comma-separated list
of strings

Store in TSV format

Path langsim.modules.local_lm.store_tsv
Executable yes

Takes embeddings stored in the default format used within Pimlico pipelines (see Embeddings) and stores them as
TSV files.

These are suitable as input to the Tensorflow Projector.

Like the built-in store_tsv module, but includes some additional language information in the metadata to help with
visualization.

Inputs

Name Type(s)
embeddings Embeddings

24 Chapter 4. Documentation

https://projector.tensorflow.org/

Langsim Documentation, Release 1.0

Outputs

Name Type(s)
embeddings TSVVecFiles

Validation criterion correlation

Path langsim.modules.local_lm.val_crit_correlation
Executable yes

Compute correlation between the validation criterion and the retrieval of known correspondences. See the paper for
more details.

Inputs

Name Type(s)
models list of KerasModelBuilderClass

Outputs

Name Type(s)
metrics NamedFile()
final_metrics NamedFile()
correlations NamedFile()

4.2 langsim package

4.2.1 Subpackages

langsim.datatypes package

Submodules

langsim.datatypes.neural_sixgram module

Module contents

4.2.2 Module contents

4.2. langsim package 25

Langsim Documentation, Release 1.0

26 Chapter 4. Documentation

Python Module Index

d
langsim.datatypes, 25

l
langsim, 25

m
langsim.modules, 9
langsim.modules.fake_language, 9
langsim.modules.fake_language.corrupt,

9
langsim.modules.fake_language.inspect,

11
langsim.modules.input, 11
langsim.modules.input.est_ref_normalize,

11
langsim.modules.input.europarl, 12
langsim.modules.input.ylilauta, 13
langsim.modules.local_lm, 13
langsim.modules.local_lm.corruption_results,

14
langsim.modules.local_lm.embed_anal, 14
langsim.modules.local_lm.embeddings_from_model,

15
langsim.modules.local_lm.lang_embeddings,

16
langsim.modules.local_lm.neural_sixgram,

16
langsim.modules.local_lm.neural_sixgram2,

20
langsim.modules.local_lm.neural_sixgram_samples,

23
langsim.modules.local_lm.plot, 23
langsim.modules.local_lm.store_tsv, 24
langsim.modules.local_lm.val_crit_correlation,

25

27

Langsim Documentation, Release 1.0

28 Python Module Index

Index

L
langsim (module), 25
langsim.datatypes (module), 25
langsim.modules (module), 9
langsim.modules.fake_language (module), 9
langsim.modules.fake_language.corrupt (module), 9
langsim.modules.fake_language.inspect (module), 11
langsim.modules.input (module), 11
langsim.modules.input.est_ref_normalize (module), 11
langsim.modules.input.europarl (module), 12
langsim.modules.input.ylilauta (module), 13
langsim.modules.local_lm (module), 13
langsim.modules.local_lm.corruption_results (module),

14
langsim.modules.local_lm.embed_anal (module), 14
langsim.modules.local_lm.embeddings_from_model

(module), 15
langsim.modules.local_lm.lang_embeddings (module),

16
langsim.modules.local_lm.neural_sixgram (module), 16
langsim.modules.local_lm.neural_sixgram2 (module), 20
langsim.modules.local_lm.neural_sixgram_samples

(module), 23
langsim.modules.local_lm.plot (module), 23
langsim.modules.local_lm.store_tsv (module), 24
langsim.modules.local_lm.val_crit_correlation (module),

25

29

	Getting started
	Pipelines
	Corpora
	Documentation
	Python Module Index

